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We show analytically that the coexistence of quadratic and cubic nonlinearities in dispersive media
offers kink solitons with the Fermi-Dirac distribution. The underlying principle and the ubiquity of the

present solitons are discussed.

PACS number(s): 03.40.Kf, 42.65.—k, 82.20.—w

I. INTRODUCTION

The soliton phenomenology has now become ubiqui-
tous in modern sciences, and can be found in many
branches of physics [1]. Of these, along with the
Korteweg-de Vries and the sine-Gordon systems, the type
that can be described by a nonlinear Schrodinger-type
equation will be representative of solitons. A well known
example of this type of soliton is found in the laser beam
(or pulse) propagation in a Kerr-type nonlinear medium
that includes manmade structures such as fibers and
waveguides [2]. More recently, signals that show evi-
dence for the microwave soliton have been detected [3] by
using intensified magnetostatic-wave propagation in a fer-
romagnetic thin film. As is well known, there exist two
kinds of solitons in the canonical (1+ 1)-dimensional cu-
bic nonlinear Schrodinger equation (NLSE): bright and
dark solitons. In addition to these two, the third type,
termed a kink soliton, was found to exist in a variety of
physical contexts. Of several models that can support a
kink soliton or a kinky solitary wave, the most represen-
tative is that predicted by the sine-Gordon equation [4].
Aside from the sine-Gordon kinks, in the framework of
continuum approximation for nonlinear monatomic
chains, Flytzanis, Pnevmatikos, and Remoissenet [5]
presented a kink soliton solution of a generalized Bous-
sinesq equation that they derived. In the context of non-
linear optics, shock-type solitary-wave solutions with ta-
chonic properties were obtained by Christodoulides [6]
for the case of nonlinear interaction of two optical waves
in a Raman medium. Through a nonlinear medium with
strong dissipation, a Taylor shock wave could propagate
as a kink soliton. Concerning propagation of electromag-
netic transients in a quadratic nonlinear dispersive medi-
um, Xu, Auston, and Hasegawa [7] recently predicted the
Taylor shock-wave solution in a strongly dissipative re-
gime. More recently, in the nonlinear optics context,
Agrawal and Headley III [8] showed that a (1+41)-
dimensional generalized NLSE that includes the effect of
intrapulse stimulated Raman scattering offers a kink soli-
ton, which represents a shock front that propagates un-
distorted inside a dispersive nonlinear medium. Subse-
quently, as a higher-dimensional extension of self-
consistent kink formation, a bright-kink symbion result-
ing from the combined effect of self-trapping and intra-
pulse stimulated Raman scattering was predicted by Hay-
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ata and Koshiba [9]. We present in this paper a kink soli-
ton with the Fermi-Dirac distribution. This type of kink
soliton arises from the coexistence of quadratic and cubic
nonlinearities in a dispersive medium. The underlying
principle of the present soliton is described, and therein
two different types (type I and type II) are found to exist.
Emphasis is on its ubiquity in various physical models
that include, e.g., mathematical ecology, chemical kinet-
ics, radiation-matter interactions, and nonlinear optics.

II. FERMI-DIRAC KINK SOLITARY WAVES

First we consider a generic version of a quadratic-cubic
nonlinear Schrodinger-type equation

Kku,=u,, +cu+cultciute,, (m

where u is the field amplitude that depends on x and
t [u=u(x,t)],c; (j=0-3) is a real constant correspond-
ing to the coefficient of u/ (assume c,c;70), and « is a
complex parameter. For instance, for reaction-diffusion
systems [10], k=1, while for paraxial wave propagation,
K==

Through a heuristic manner we have found that Eq. (1)
admits of a stationary (a static) solitary-wave solution
(u,=0) [11]

u(x)=ugptu; feplax), (2a)
with

fro(§)=[exp(§)+1]7", (2b)
provided that

co=aup+3ud /up +2u} /u}l), (3a)

cy=—aX1+6ug /u; +6up /u}), (3b)

cy=aX3/u; +6ug /u}l), (3c)

c3=—2a%/u} . (3d)

Here u; =u(— )70, ug=u(w), and a is a positive
constant. It is interesting to note that Eq. (2b) is identi-
cal to the Fermi-Dirac distribution that is familiar in
solid-state physics.

As will be discussed below, when the driving term of
Eq. (1) vanishes (i.e., c;=0), one will find several impor-
tant physical systems that can be modeled with it. For

3267 ©1994 The American Physical Society



3268

0 —— ——

FIG. 1. Schematic illustrations of (a) kink (u; <0) and (b)
antikink (u, > 0) solitons in a quadratic-cubic nonlinear disper-
sive medium. The definitions of the type-I and the type-II kinks
are given in the text.

this reason, we shall concentrate in what follows on the
homogeneous (the source-free) version of Eq. (1). Setting
¢, =0 on Eq. (3a), among the three cases we find only the
following two cases nontrivial:

ug=0 or ug=—uy . 4

Here the solution, up =—u; /2, has been rejected be-
cause, as obvious from Eq. (3c), the quadratic nonlineari-
ty vanishes (c,=0) [12]. With Eq. (4) being substituted,
Eq. (2a) becomes

u(x)=uy fpplax) for ug =0 (type 1), (5a)
u(x)=up[feplax)—1] for ug=—u; (type II), (5b)

where (¢, ¢,) in Egs. (3b) and (3c) are reduced to (c,
c,)=(—a%3a*/u;) for ug=0 (type I), and (c,,
¢,)=(—a% —3a*/u; ) for ug =—u, (type II). For later
convenience we identify the kink solution of Eq. (5a) [Eq.

FIG. 2. Evolution of (a) type-I and (b) type-II solitary wave
along the ¢ axis. The parameters in Eq. (1) are set to be k= —1i,
co=0, ¢;=—1, ¢;=3 (—3) for the type-I (II) kink, and
¢3=—2. Those in Eq. (5) are u; =a=1. The kink solution of
Eq. (5) is launched at t=0. The total propagation time attains
5, which coincides with ten soliton units, where one soliton
unit is taken to be 7/2. Note that for k=1 with other parame-
ters unchanged, the exact same results have been obtained.
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(5b)] with the type-I (type-II) kink. Schematic illustra-
tions of the kink profiles are shown in Fig. 1. According
to the terminology used for the sine-Gordon context, the
negative u; (u; <0) yields a kink solution (u; <ug),
whereas the positive u; (u; >0) yields an antikink solu-
tion (u; >ug). Apparently, a ' features the steepness of
the kinky section. To evidence the solitonic feature of
the present kink solitary wave, numerical simulations
have been performed with a computational tool previous-
ly developed by us [13]. Example results are shown in
Fig. 2. In both types the solitary wave being input at
t =0 is stable and remains unchanged even after the prop-
agation over ten soliton units.

III. SPECIFIC EXAMPLES IN PHYSICAL SYSTEMS

Below, in diverse branches of physical systems we shall
find relevance to the present kink solutions. To our
knowledge, the simplest example that can be modeled in
terms of the quadratic-cubic nonlinear Schrodinger-type
equation will be seen in the Fisher-type nonlinear
diffusion equation for ecological wave evolutions [14]

u,=u,, —ula—u)(l—u)
=y, —au+(a+Du’—u’, (6)

where u represents the local density of a particular
species, and a is a phenomenological real parameter
(—1=<a <1). Through brief algebra we have found that
with u, =0, Eq. (6) allows the type-I kink solution

u(x)=fpp(x/2'%) fora=1. (7

Note that for any value of a, we have proved that Eq. (6)
does not include the type-II solution.

Subsequently we consider the reaction-diffusion equa-
tions based on a piecewise linearized FitzHugh-Nagumo
model [15,16]

u,=uy,,—¢ 'ulu—1D[u—(v+b)/a], (8a)
v,=u-—v, (8b)

where the model is assumed to consist of two chemical
species, u and v, that evolve in the space-time and a, b,
and € are real parameters [16]. For instance, for a con-
tinuous excitable medium the key parameters are b and €.
The former determines the excitation threshold, and the
latter provides the relationship of the time scales of the
fast (activator u) and the slow (inhibitor v) variable.
Since in usual cases the time scale of u is much faster
than that of v, the parameter ¢ is typically smaller than
unity. Note that the excitability of a system may be
defined by €~ !. When v, =0, Egs. (8) are joined to the
single equation

u,=uy,,—e 'ulu—D[u—(u+b)/a],
=u, —blea) 'u—e '[(1—=b)a " '—1]u?
—e M1—a Hu’. 9)

Through algebra with u, =0, we have found that in con-
trast to the aforementioned Fisher-type system, Eq. (9)
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offers both the type-I [Eq. (5a)] and the type-II [Eq. (5b)]
kinks with

u,=p, a=[(a—1)2ea)"']'? fora=2b+1,
(10a)
u;=2u, a=[2(a—1)ea) 1'% fora=b/2+1,
(10b)

where p=1 (—1) for the type-I (II) kink. Note that with
p=1and a=(1—e)" ! in Eq. (10a), the solution becomes
identical to Eq. (7).

The possibility of supporting the kink wave could also
be found in electromagnetics. In the context of
radiation-matter interactions, stationary propagation of
far-infrared electromagnetic polaritons in a nonlinear
dispersive crystal medium far from the material reso-
nance may be governed by an extended Boussinesg-type
equation [7,17]

Uprrr (Y2 — Dy +6(u?), +6(u3),, =0, (11a)

with

6= —36e,x'>/(X'*)?, (11b)

where u is a principal component of the electric field, x is
a scaled local time in the frame of reference moving with
the signal velocity, ¥ is a real parameter that represents
the reciprocal signal velocity, €4 is the static dielectric
constant, and x'®’ (y'*) represents the quadratic (cubic)
nonlinearity. With vanishing 6, Eq. (11a) coincides with
the equation derived by Xu, Auston, and Hasegawa [7]
for a quadratic nonlinear dispersive medium. In the con-
text of the continuum limit of nonlinear monatomic
chains, Flytzanis, Pnevmatikos, and Remoissenet [5] de-
rived a generalized Boussinesq equation that is similar to
Eq. (11a). For the equation they presented a kink soliton
solution. Although the solution they derived may include
the present Fermi-Dirac kink, they did not mention the
relevance to it.
To derive the kink solution of Eq. (11a), first we set
u, =0in Eq. (1), and differentiate it with x:
Upprx FC 11y HCo(u?),, Fej(u?), =0 . (12)

Comparison of Egs. (11a) and (12) leads straightforwardly
to

up =+20"[12—6(y2—1)]"/%, (13a)
ug=—0"'2+[12—0(y*—1)]""?} , (13b)
a=(—0/2)"u,|={—20""[12—6(y2—1)]} /2.

(13¢)

From Eq. (13c), @ must be negative (6 <0), which indi-
cates that only the self-focusing type [x'*’>0 in Eq.
(11b)] is allowed. Because u# must be real, from Egs.
(13a) and (13b) it must be required that

yi>12/6+1. (14)
For —12<6<0, Eq. (14) holds unconditionally, whereas
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for 6<—12, this requirement is met solely for
ly|>(12/6+1)72. When ugz =0 (type-I kink), Egs. (13)
are reduced in the form

u,=—4/6, a=(—8/0)"?, (15)
with
lyl=(1+8/6)1"%, (16)

where 6 < —8. It should be stressed here that because y
governs the reciprocal velocity normalized by the speed
of light in the material medium, |y | <el/? permits of su-
perluminal (tachonic) propagation of the pulse, which
means that the kink velocity does exceed the speed of
light in vacuum. This possibility is extremely interesting
in the sense that information carried by the kink could be
transmitted with a superluminal velocity.

Finally we shall explore whether the present kink field
could in principle be generated in the optical regime of
electromagnetic spectra. To answer this question, as an
example we consider a phase-matched collinear interac-
tion of a fundamental (®) and a second-harmonic (2w)
laser beam in a quadratic-cubic nonlinear medium. For
slowly varying envelopes along the propagation (the ?)
axis, the basic equations for the parametrically coupled
optical envelopes, u (o) and v (2w), can be written as [18]

—i2Bu,=u, +(e;—Bu+2du*v+a,(lu|>*+2|v|>u ,
(17a)
—i4Bv,=v,, +4(e,— B v +4d,u’+4a,(|[v|*+2|u|*w ,
(17b)

where B is the phase constant along the ¢ axis, ¢ is the rel-
ative permittivity, d(a) accounts for contribution from
the quadratic (cubic) nonlinearity, the subscript
Jj (j =1,2) indicates the quantity of the jo component,
and the asterisk denotes complex conjugate. Unlike the
three examples discussed above, in the present context
the field variables ¥ and v are in general complex. We
have found that when u, =v, =0, Egs. (17) can yield both
the type-I and the type-II kink solutions:

u(x)=up feplax) , v(x)=v; feplax)

for type-I kink , (18a)
u(x)=u;[feplax)—1], v(x)=v;[feplax)—1]
for type-II kink , (18b)
with
B=(g,+Ae/3)'?, Ae=g,—¢,, (19a)
a=2(Ae/3)?, (19b)
luy |=[2/(d,d)]"*Ae , (19¢)
vp=mnuL , (19d)
Inl=02K,)'"?, K,=d,/d,, (19¢)

for
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0.125<K,<0.5, K,=a,/a,, (20a)  Fermi-Dirac kink that is presented in this paper belongs

to the latter. According to the recent work by Kivshar

a,=—4dd,/[3Ae(1+4K )], (20b)  and co-workers [19], the latter class of kinks may become
a,=—d,d,/[6Ae(1+K,)] . (20¢) unstable if the background becomes unstable.

From Egs. (20) the quadratic and the cubic nonlinearities
should be interrelated through the relation

K,=(1—8K,) /(8K ,—4) . 21

For instance, for K, ~1 (d,~d,=d), Egs. (20) and (21)
become

a,~—4d*/(15A¢), a,~—d*/(12A¢),
K,~0.3125 .

(22)

Finally we would like to mention the stability of the
Fermi-Dirac kink against perturbations. It should be
noted that there is a qualitative difference between topo-
logical kinks of the sine-Gordon model (4] and nontopo-
logical kinks as reported in Refs. [S—8]. Obviously the

IV. CONCLUSIONS

We have presented a kink soliton with the Fermi-Dirac
profile, which arises from the coexisting quadratic and
cubic nonlinearities in a dispersive medium. The under-
lying principle of the present soliton have been elucidated
and its ubiquitous aspects in modern physical sciences
have been confirmed by presenting typical example mod-
els in various physical contexts.
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FIG. 2. Evolution of (a) type-I and (b) type-1I solitary wave
along the ¢ axis. The parameters in Eq. (1) are set to be k= —1,
¢=0, ¢;,=—1, ¢;=3 (—3) for the type-I (II) kink, and
¢3=—2. Those in Eq. (5) are u; =a=1. The kink solution of
Eq. (5) is launched at t =0. The total propagation time attains
57, which coincides with ten soliton units, where one soliton
unit is taken to be /2. Note that for k=1 with other parame-
ters unchanged, the exact same results have been obtained.



